【Python 使用和高性能技巧总结】

简介: 【Python 使用和高性能技巧总结】

1. 易混淆操作


1.1 有放回随机采样和无放回随机采样


import random
random.choices(seq, k=1)  # 长度为k的list,有放回采样
random.sample(seq, k)     # 长度为k的list,无放回采样


1.2 lambda 函数的参数


func = lambda y: x + y          # x的值在函数运行时被绑定
func = lambda y, x=x: x + y     # x的值在函数定义时被绑定

1.3 copy 和 deepcopy

import copy
y = copy.copy(x)      # 只复制最顶层
y = copy.deepcopy(x)  # 复制所有嵌套部分

复制和变量别名结合在一起时,容易混淆:

a = [1, 2, [3, 4]]
# Alias.
b_alias = a  
assert b_alias == a and b_alias is a
# Shallow copy.
b_shallow_copy = a[:]  
assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]
# Deep copy.
import copy
b_deep_copy = copy.deepcopy(a)  
assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]

对别名的修改会影响原变量,(浅)复制中的元素是原列表中元素的别名,而深层复制是递归的进行复制,对深层复制的修改不影响原变量。


1.4 == 和 is


x == y  # 两引用对象是否有相同值
x is y  # 两引用是否指向同一对象


1.5 判断类型


type(a) == int      # 忽略面向对象设计中的多态特征
isinstance(a, int)  # 考虑了面向对象设计中的多态特征


1.6 字符串搜索


str.find(sub, start=None, end=None); str.rfind(...)     # 如果找不到返回-1
str.index(sub, start=None, end=None); str.rindex(...)   # 如果找不到抛出ValueError异常


1.7 List 后向索引


这个只是习惯问题,前向索引时下标从0开始,如果反向索引也想从0开始可以使用

print(a[-1], a[-2], a[-3])
print(a[~0], a[~1], a[~2])


2. 常用工具


2.1 读写 CSV 文件


import csv
# 无header的读写
with open(name, 'rt', encoding='utf-8', newline='') as f:  # newline=''让Python不将换行统一处理
    for row in csv.reader(f):
        print(row[0], row[1])  # CSV读到的数据都是str类型
with open(name, mode='wt') as f:
    f_csv = csv.writer(f)
    f_csv.writerow(['symbol', 'change'])
# 有header的读写
with open(name, mode='rt', newline='') as f:
    for row in csv.DictReader(f):
        print(row['symbol'], row['change'])
with open(name, mode='wt') as f:
    header = ['symbol', 'change']
    f_csv = csv.DictWriter(f, header)
    f_csv.writeheader()
    f_csv.writerow({'symbol': xx, 'change': xx})

注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决

import sys
csv.field_size_limit(sys.maxsize)

csv 还可以读以 \t 分割的数据

f = csv.reader(f, delimiter='\t')


2.2 迭代器工具


itertools 中定义了很多迭代器工具,例如子序列工具:

import itertools
itertools.islice(iterable, start=None, stop, step=None)
# islice('ABCDEF', 2, None) -> C, D, E, F
itertools.filterfalse(predicate, iterable)         # 过滤掉predicate为False的元素
# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6
itertools.takewhile(predicate, iterable)           # 当predicate为False时停止迭代
# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4
itertools.dropwhile(predicate, iterable)           # 当predicate为False时开始迭代
# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1
itertools.compress(iterable, selectors)            # 根据selectors每个元素是True或False进行选择
# compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F

序列排序:

sorted(iterable, key=None, reverse=False)
itertools.groupby(iterable, key=None)              # 按值分组,iterable需要先被排序
# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)
itertools.permutations(iterable, r=None)           # 排列,返回值是Tuple
# permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC
itertools.combinations(iterable, r=None)           # 组合,返回值是Tuple
itertools.combinations_with_replacement(...)
# combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD

多个序列合并:

itertools.chain(*iterables)                        # 多个序列直接拼接
# chain('ABC', 'DEF') -> A, B, C, D, E, F
import heapq
heapq.merge(*iterables, key=None, reverse=False)   # 多个序列按顺序拼接
# merge('ABF', 'CDE') -> A, B, C, D, E, F
zip(*iterables)                                    # 当最短的序列耗尽时停止,结果只能被消耗一次
itertools.zip_longest(*iterables, fillvalue=None)  # 当最长的序列耗尽时停止,结果只能被消耗一次


2.3 计数器


计数器可以统计一个可迭代对象中每个元素出现的次数。

import collections
# 创建
collections.Counter(iterable)
# 频次
collections.Counter[key]                 # key出现频次
# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素
collections.Counter.most_common(n=None)
# 插入/更新
collections.Counter.update(iterable)
counter1 + counter2; counter1 - counter2  # counter加减
# 检查两个字符串的组成元素是否相同
collections.Counter(list1) == collections.Counter(list2)


2.4 带默认值的 Dict


当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值

import collections
collections.defaultdict(type)  # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值


2.5 有序 Dict


import collections
collections.OrderedDict(items=None)  # 迭代时保留原始插入顺序


3. 高性能编程和调试


3.1 输出错误和警告信息


向标准错误输出信息

import sys
sys.stderr.write('')

控制警告消息的输出

$ python -W all     # 输出所有警告,等同于设置warnings.simplefilter('always')
$ python -W ignore  # 忽略所有警告,等同于设置warnings.simplefilter('ignore')
$ python -W error   # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')


3.2 代码中测试


有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:

# 在代码中的debug部分
if __debug__:
    pass

一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:

$ python -0 main.py


3.4 代码耗时


耗时测试

$ python -m cProfile main.py

测试某代码块耗时

# 代码块耗时定义
from contextlib import contextmanager
from time import perf_counter
@contextmanager
def timeblock(label):
    tic = perf_counter()
    try:
        yield
    finally:
        toc = perf_counter()
        print('%s : %s' % (label, toc - tic))
# 代码块耗时测试
with timeblock('counting'):
    pass

代码耗时优化的一些原则


专注于优化产生性能瓶颈的地方,而不是全部代码。

避免使用全局变量。局部变量的查找比全局变量更快,将全局变量的代码定义在函数中运行通常会快 15%-30%。

避免使用.访问属性。使用 from module import name 会更快,将频繁访问的类的成员变量 self.member 放入到一个局部变量中。

尽量使用内置数据结构。str, list, set, dict 等使用 C 实现,运行起来很快。

避免创建没有必要的中间变量,和 copy.deepcopy()。

字符串拼接,例如 a + ‘:’ + b + ‘:’ + c 会创造大量无用的中间变量,‘:’,join([a, b, c]) 效率会高不少。另外需要考虑字符串拼接是否必要,例如 print(‘:’.join([a, b, c])) 效率比 print(a, b, c, sep=‘:’) 低。


4. Python 其他技巧


4.1 argmin 和 argmax


items = [2, 1, 3, 4]
argmin = min(range(len(items)), key=items.__getitem__)

argmax同理。


4.2 转置二维列表


A = [['a11', 'a12'], ['a21', 'a22'], ['a31', 'a32']]
A_transpose = list(zip(*A))  # list of tuple
A_transpose = list(list(col) for col in zip(*A))  # list of list


4.3 一维列表展开为二维列表


A = [1, 2, 3, 4, 5, 6]
# Preferred.
list(zip(*[iter(A)] * 2))


相关文章
|
14天前
|
机器学习/深度学习 分布式计算 并行计算
性能优化视角:Python与R在大数据与高性能机器学习中的选择
【8月更文第6天】随着数据量的激增,传统的单机计算已经难以满足处理大规模数据集的需求。Python和R作为流行的数据科学语言,各自拥有独特的特性和生态系统来应对大数据和高性能计算的挑战。本文将从性能优化的角度出发,探讨这两种语言在处理大数据集和高性能计算时的不同表现,并提供具体的代码示例。
30 3
|
1月前
|
数据库 开发者 Python
实战指南:用Python协程与异步函数优化高性能Web应用
【7月更文挑战第15天】Python的协程与异步函数优化Web性能,通过非阻塞I/O提升并发处理能力。使用aiohttp库构建异步服务器,示例代码展示如何处理GET请求。异步处理减少资源消耗,提高响应速度和吞吐量,适用于高并发场景。掌握这项技术对提升Web应用性能至关重要。
57 10
|
2月前
|
机器学习/深度学习 存储 自然语言处理
惊艳!老司机熬夜总结的Python高性能编程,高效、稳定、快速!
Python 语言是一种脚本语言,其应用领域非常广泛,包括数据分析、自然语言处理机器学习、科学计算、推荐系统构建等。 能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象而这个问题其实是可以解决的。 有些人想要让顺序执行的过程跑得更快。有些人需要利用多核架构、集群,或者图形处理单元的优势来解决他们的问题。有些人需要可伸缩系统在保证可靠性的前提下酌情或根据资金多少处理更多或更少的工作。有些人意识到他们的编程技巧,通常是来自其他语言,可能不如别人的自然。
|
2月前
|
机器学习/深度学习 存储 自然语言处理
惊艳!老司机熬夜总结的Python高性能编程,高效、稳定、快速!
Python 语言是一种脚本语言,其应用领域非常广泛,包括数据分析、自然语言处理机器学习、科学计算、推荐系统构建等。 能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象而这个问题其实是可以解决的。 有些人想要让顺序执行的过程跑得更快。有些人需要利用多核架构、集群,或者图形处理单元的优势来解决他们的问题。有些人需要可伸缩系统在保证可靠性的前提下酌情或根据资金多少处理更多或更少的工作。有些人意识到他们的编程技巧,通常是来自其他语言,可能不如别人的自然。
|
3月前
|
开发框架 网络协议 前端开发
Python高性能web框架--Fastapi快速入门
Python高性能web框架--Fastapi快速入门
102 1
|
3月前
|
缓存 监控 API
利用Python构建高性能的Web API后端服务
随着微服务架构的普及和RESTful API的广泛应用,构建高性能、可扩展的Web API后端服务变得尤为重要。本文将探讨如何利用Python这一强大且灵活的语言,结合现代Web框架和工具,构建高效、可靠的Web API后端服务。我们将分析Python在Web开发中的优势,介绍常用的Web框架,并通过实际案例展示如何设计并实现高性能的API服务。
|
3月前
|
缓存 数据库连接 数据库
构建高性能的Python Web应用:优化技巧与最佳实践
本文探讨了如何通过优化技巧和最佳实践来构建高性能的Python Web应用。从代码优化到服务器配置,我们将深入研究提高Python Web应用性能的各个方面。通过本文,读者将了解到一系列提高Python Web应用性能的方法,从而更好地应对高并发和大流量的挑战。
|
3月前
|
缓存 监控 API
Python Web框架FastAPI——一个比Flask和Tornada更高性能的API框架
Python Web框架FastAPI——一个比Flask和Tornada更高性能的API框架
207 0
|
3月前
|
缓存 负载均衡 应用服务中间件
构建高性能的Python Web应用程序的关键技术
本文将探讨构建高性能的Python Web应用程序的关键技术。我们将介绍Python的优势以及如何利用一些重要的技术和工具来提升Web应用程序的性能和效率,包括异步编程、缓存策略、性能调优和负载均衡等。
|
3月前
|
测试技术 调度 项目管理
Python多任务协程:编写高性能应用的秘密武器
Python多任务协程:编写高性能应用的秘密武器
31 1