全网最快入门———R语言机器学习11

简介: R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

下面对R语言中频数统计函数解释

函数介绍——频数统计函数

频数在数据分析中是非常重要的一个概念,因为经常需要进行分组统计,比较不同组之间的差异,这些都要涉及到频数的统计。因子是专门用来进行分组的,有因子才能分组,分组之后才能进行频数统计。

首先介绍一下R如何对数据进行分组:

如果一个数据本身就是因子,那么直接就可以进行分组,例如mtcars数据集,里面的“cyl”这一列数据直接就可以作为因子,依据气缸数的不同来进行分组。

用as.factor()函数将这列转换为因子数据:

cylfactors<-as.factor(mtcars$cyl)

然后可以使用split()函数对数据进行分组:

myvars<-dplyr::mutate(myvars,cylfactors1=cylfactors)
split(myvars,myvars$cylfactors1)

还可以使用cut()函数(如果没有明显的分类),cut可以对连续的数据进行切割,使用cut()函数对“mpg”这列进行分割,根据10-50切成10份,就是以步长为10,每十下一切:

cut(myvars$mpg,c(seq(10,50,10)))

此处seq()函数的选项参数是:seq(from=,to=,by=组距)

在分组之后,就可以用table()函数进行频数的统计,table()函数可以计算频数表。

table()函数的使用比较简单:

table(myvars$cylfactors1)

cut()函数的结果也可以使用table()来统计:

table(cut(myvars$mpg,c(seq(10,50,10))))

以上就是频数统计的做法

用频数除以总数就是频率值,R中可以直接使用prop.table()函数计算频率值:

prop.table(table(myvars$cylfactors1))

频率值*100就是百分比的结果。


那么二维的数据框如何进行频率统计呢?

可以使用table()或者是as.table()函数,选项参数输入两个因子就可以计算二维数据的频率了。


这里我们以vcd包中的风湿病数据集(arthritis)进行示范。

Arthritis数据集中的“treatment”、“sex”以及“improved”列都可以作为因子数据,因为它们是类型量,我们取两个作统计:

table(Arthritis$Treatment,Arthritis$Improved)

返回的结果是一个二维的列联表,横向是安慰剂组与治疗组的区分,每一列分别是“没有效果”、“有一些效果”、“很有效果”的区分:

如果变量太多,我们也可以先使用with()或者是attach()函数先加载数据:

with(data=Arthritis,table(Treatment,Improved))

这样就不用反复的书写变量名称


处理二维列联表还可以使用xtabs()函数,这个函数的好处是它的选项参数使用的是formula参数,这样就可以根据需要写成多种公式。

同样是“treatment”以及“improved”列,使用xtabs()函数计算如下:

xtabs(~Treatment+Improved,data=Arthritis)

formula参数是可以省略的,结果和with()函数的一致

对于二维列联表我们还可以使用margin.table()和prop.table()函数分别计算边际频数与比例(边际频率),边际频数的意思就是单独按照行或者列的数据进行处理。

我们将xtabs()的结果保存到变量x中,再使用margin.table()函数统计一下x:

x<-xtabs(~Treatment+Improved,data=Arthritis)
margin.table(x)

返回值只有一个,代表返回的是所有的结果,这里需要给定一个边际值,1或者2,1代表行,2代表列:

margin.table(x,1)

使用prop.table()函数计算比例(边际频率):

prop.table(x,1)

从边际和比例的计算结果可以看出,有治疗组有51%的比例是效果显著的,比边际频数41要大,说明药物是有用的。

再将margin.table()参数换成2,则是按列进行统计

margin.table(x,2)

addmargin()函数可以直接将边际的和添加到频数表中

addmargins(x)

这个函数也可单独计算行、列

addmargins(x,1)

addmargins(x,2)

我们也可以计算三维的列联表,加多一个参数就可以:

xtabs(~Treatment+Improved+Sex,data=Arthritis)


结果看起来有点乱,这时候我们可以使用ftable()函数,它能将结果转换为一个平铺式的列联表

y<-xtabs(~Treatment+Improved+Sex,data=Arthritis)
ftable(y)

相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
36 2
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
32 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
56 3
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
44 2
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
23 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
57 2
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
29 4
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
485 1
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)

热门文章

最新文章

下一篇
无影云桌面