全球名校AI课程库(15)| Stanford斯坦福 · 线性代数与矩阵方法导论课程『Introduction to Applied Linear Algebra』

简介: 快速补充线性代数的必选课程!课程用了非常多的例子和图标,来直观地表示向量、矩阵与复杂世界的关系,并将数学转化为解决工程问题的能力。
ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论
🏆 课程学习中心 | 🚧 CS数学基础课程合辑 | 🌍 课程主页 | 📺 中英字幕视频 | 🚀 项目代码解析


课程介绍

线性代数,是数据科学高阶课程的前置课程,也是前沿热门应用领域的根基。数据科学、机器学习、人工智能、信号和图像处理、层析成像、导航、金融等等,都建立在数学的基础之上。如果你想快速补充线性代数的相关知识,ENGR108 这门课是非常好的选择!

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

ENGR108 (曾用名:EE103、CME103)是全球顶级院校斯坦福开设的以线性代数和矩阵论为主题的专业课程。不同于定理证明矩阵运算的传统内容,这门课程更直观,用非常多的例子和图标,来表示向量、矩阵与复杂世界的关系,并能够解决现实问题。

线性代数的相关知识,向量、矩阵与矩阵运算、线性拟合、范数、线性方程等,这门课都已覆盖,而且设计巧妙,结合了实际应用场景,将数学转化为解决工程问题的能力。

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

课程讲师 Stephen Boy,斯坦福教授,是目前全球讲授线性代数、矩阵论方向最著名的老师之一,也是高赞图书《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares(应用线性代数简介——向量、矩阵和最小二乘法)》、《Convex optimization(凸优化)》的联合作者。

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares(应用线性代数简介——向量、矩阵和最小二乘法)》也是本门课程的教材。课程网站中有这本书的电子版!不仅如此,课件、视频、Julia实现代码等配套学习资源也特别到位。


课程主题

课程官网发布了课程主题,ShowMeAI 对其进行了翻译。

  • Linear functions(线性函数
  • Intro to Julia Tutorial(Julia 入门教程
  • Norm and distance(范数与距离度量
  • Clustering(聚类
  • Linear independence(线性无关
  • Matrices(矩阵
  • Linear equations(线性方程
  • Linear dynamical systems(线性动态系统
  • Matrix multiplication(矩阵乘法
  • Matrix inverses(逆矩阵
  • Regression(回归
  • Least squares classification(最小二乘法
  • Multi-objective least squares(多目标最小二乘
  • Constrained least squares(受约束的最小二乘


课程资料 | 下载

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

扫描上方图片二维码,关注公众号并回复关键字 🎯『ENGR108』,就可以获取整理完整的资料合辑啦!当然也可以点击 🎯 这里 查看更多课程的资料获取方式!

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

课程面向全网,开发了全套课程资料。ShowMeAI 对课程资料进行了梳理,整理成这份完备且清晰的资料包:

  • 📚 e-book:课程对应的电子书。
  • 📚 课件:Chapter 1-19的所有课件PDF版本。
  • 📚 作业: Stephen Boyd (课程讲师) 和 Lieven Vandenberghe 整理的课程练习题,共20多页,21章。

还有比这更适合学习的么!学起来吧朋友们,四舍五入我们也算是Stanford的学生了!


课程视频 | B站

🌍 B站 | 【双语字幕+资料下载】斯坦福ENGR108 | 矩阵论与应用线性代数(2020·完整版)

ShowMeAI 将视频上传至B站,并增加了中英双语字幕,以提供更加友好的学习体验。点击页面视频,可以进行预览。推荐前往 👆 B站 观看完整课程视频哦!


全球名校AI课程合辑

作者ShowMeAI内容团队
阅读原文https://www.showmeai.tech/article-detail/346

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
2月前
|
人工智能 弹性计算 大数据
和五所高校一起,我们共同打造了一门 AI 课程!
阿里云、超星尔雅协同北京大学、南京大学、复旦大学、上海交通大学、浙江大学五所高校名师,共同推出的 AI 通识公益系列课程「动手学 AI:人工智能通识与实践」将于 9月 1 日面向全国所有高校、所有专业的师生正式开放。
280 5
|
5月前
|
机器学习/深度学习 人工智能 算法
智创 AI 新视界 -- 提升 AI 推理速度的高级方法(16 - 2)
本文深度聚焦提升 AI 推理速度,全面阐述模型压缩(低秩分解、参数量化)、硬件加速(GPU、TPU)及推理算法优化(剪枝感知推理、动态批处理)。结合图像识别等多领域案例与丰富代码示例,以生动形象且专业严谨的方式,为 AI 从业者提供极具价值的技术指南,助力突破 AI 推理速度瓶颈,实现系统性能跃升。
|
3天前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
51 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
188 8
|
1月前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
131 4
|
2月前
|
人工智能 JSON 监控
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
AI Agent的评估需覆盖其整个生命周期,从开发到部署,综合考量事实准确性、推理路径、工具选择、结构化输出、多轮对话及实时性能等维度。LangSmith作为主流评估平台,提供了一套全面的评估框架,支持12种评估技术,包括基于标准答案、程序性分析及观察性评估。这些技术可有效监控Agent各组件表现,确保其在真实场景中的稳定性和可靠性。
958 0
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
|
3月前
|
人工智能 文字识别 供应链
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
122 7
|
3月前
|
人工智能 开发者
AI-Compass宝藏资源库:构建最全面的AI学习
AI-Compass宝藏资源库:构建最全面的AI学习
|
5月前
|
SQL 人工智能 数据库
SQL Server 2025 - 从本地到云端的 AI 就绪企业数据库
SQL Server 2025 - 从本地到云端的 AI 就绪企业数据库
290 0
SQL Server 2025 - 从本地到云端的 AI 就绪企业数据库