【云原生&微服务八】Ribbon负载均衡策略之WeightedResponseTimeRule源码剖析(响应时间加权)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 【云原生&微服务八】Ribbon负载均衡策略之WeightedResponseTimeRule源码剖析(响应时间加权)

@[TOC]

一、前言

前置Ribbon相关文章:

  1. 【云原生&微服务一】SpringCloud之Ribbon实现负载均衡详细案例(集成Eureka、Ribbon)
  2. 【云原生&微服务二】SpringCloud之Ribbon自定义负载均衡策略(含Ribbon核心API)
  3. 【云原生&微服务三】SpringCloud之Ribbon是这样实现负载均衡的(源码剖析@LoadBalanced原理)
  4. 【云原生&微服务四】SpringCloud之Ribbon和Erueka集成的细节全在这了(源码剖析)
  5. 【微服务五】Ribbon随机负载均衡算法如何实现的
  6. 【微服务六】Ribbon负载均衡策略之轮询(RoundRobinRule)、重试(RetryRule)
  7. 【微服务七】Ribbon负载均衡策略之BestAvailableRule

我们聊了以下问题:

  1. 为什么给RestTemplate类上加上了@LoadBalanced注解就可以使用Ribbon的负载均衡?
  2. SpringCloud是如何集成Ribbon的?
  3. Ribbon如何作用到RestTemplate上的?
  4. 如何获取到Ribbon的ILoadBalancer?
  5. ZoneAwareLoadBalancer(属于ribbon)如何与eureka整合,通过eureka client获取到对应注册表?
  6. ZoneAwareLoadBalancer如何持续从Eureka中获取最新的注册表信息?
  7. 如何根据负载均衡器ILoadBalancer从Eureka Client获取到的List<Server>中选出一个Server?
  8. Ribbon如何发送网络HTTP请求?
  9. Ribbon如何用IPing机制动态检查服务实例是否存活?
  10. Ribbon负载均衡策略之随机(RandomRule)、轮询(RoundRobinRule)、重试(RetryRule)、选择并发量最小的(BestAvailableRule)实现方式;

本文继续讨论 根据响应时间加权算法(WeightedResponseTimeRule)是如何实现的?

二、WeightedResponseTimeRule

WeightedResponseTimeRule继承自RoundRobinRule,也就是说该策略是对RoundRobinRule的扩展,其增加了 根据实例运行情况来计算权重 并根据权重挑选实例的规则,以达到更优的负载、实例分配效果。

下面我们一点点来看WeightedResponseTimeRule是如何实现根据相应时间计算权重并根据权重挑选实例的?

1、计算权重?

WeightedResponseTimeRule在初始化的时候会初始化父类RoundRobinRule,在RoundRobinRule的有参构造函数中会调用setLoadBalancer(ILoadBalancer)方法,WeightedResponseTimeRule类中重写了setLoadBalancer(ILoadBalancer)方法,在setLoadBalancer(ILoadBalancer)中会调用initialize(ILoadBalancer)对权重进行初始化、并定时更新。
在这里插入图片描述

public static final int DEFAULT_TIMER_INTERVAL = 30 * 1000;

private int serverWeightTaskTimerInterval = DEFAULT_TIMER_INTERVAL;

1)如何更新权重?

WeightedResponseTimeRule通过Timer#schedule()方法启动一个上一个任务结束到下一个任务开始之间间隔30s执行一次的定时任务为每个服务实例计算权重;
在这里插入图片描述
定时任务的主体是DynamicServerWeightTask

// WeightedResponseTimeRule的内部类
class DynamicServerWeightTask extends TimerTask {
    public void run() {
        ServerWeight serverWeight = new ServerWeight();
        try {
            serverWeight.maintainWeights();
        } catch (Exception e) {
            logger.error("Error running DynamicServerWeightTask for {}", name, e);
        }
    }
}

DynamicServerWeightTask的run()方法中会实例化一个ServerWeight对象,并通过其maintainWeights()方法计算权重。

2)如何计算权重?

无论是权重的初始化还是权重的定时更新,都是使用ServerWeight#maintainWeights()方法来计算权重:

// WeightedResponseTimeRule的内部类
class ServerWeight {

    public void maintainWeights() {
        ILoadBalancer lb = getLoadBalancer();
        if (lb == null) {
            return;
        }
        // CAS保证只有一个线程可以进行权重的计算操作
        if (!serverWeightAssignmentInProgress.compareAndSet(false,  true))  {
            return; 
        }
        
        try {
            logger.info("Weight adjusting job started");
            AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;
            LoadBalancerStats stats = nlb.getLoadBalancerStats();
            if (stats == null) {
                return;
            }
            // 所有实例的平均响应时间总和
            double totalResponseTime = 0;
            for (Server server : nlb.getAllServers()) {
                // 汇总每个实例的平均响应时间到totalResponseTime上
                ServerStats ss = stats.getSingleServerStat(server);
                totalResponseTime += ss.getResponseTimeAvg();
            }
            // 计算每个实例的权重:weightSoFar + totalResponseTime - 实例的平均响应时间
            // 实例的平均响应时间越长、权重就越小,就越不容易被选择到
            Double weightSoFar = 0.0;
            
            List<Double> finalWeights = new ArrayList<Double>();
            for (Server server : nlb.getAllServers()) {
                ServerStats ss = stats.getSingleServerStat(server);
                double weight = totalResponseTime - ss.getResponseTimeAvg();
                weightSoFar += weight;
                finalWeights.add(weightSoFar);   
            }
            setWeights(finalWeights);
        } catch (Exception e) {
            logger.error("Error calculating server weights", e);
        } finally {
            // 表示权重计算结束,允许其他线程进行权重计算
            serverWeightAssignmentInProgress.set(false);
        }

    }
}

方法的核心逻辑:

  1. LoadBalancerStats中记录了每个实例的统计信息,累加所有实例的平均响应时间,得到总平均响应时间totalResponseTime
  2. 为负载均衡器中维护的实例列表逐个计算权重(从第一个开始),计算规则为:weightSoFar + totalResponseTime - 实例的平均响应时间
  3. 其中weightSoFar初始化为零,并且每计算好一个权重需要累加到weightSoFar上供下一次计算使用;

3)例证权重的计算

举个例子,假如服务A有四个实例:A、B、C、D,他们的平均响应时间(单位:ms)为:10、50、100、200。

  • 服务A的所有实例的总响应时间(totalResponseTime)为:10 + 50 + 100 + 200 = 360
  • 每个实例的权重计算规则为:总响应时间(totalResponseTime) 减去 实例的平均响应时间 + 累加的权重weightSoFar,具体到每个实例的计算如下:
  1. 实例A:360 - 10 + 0 = 350(weightSoFar = 0)
  2. 实例B:360 - 50 + 350 = 660(weightSoFar = 350)
  3. 实例C:360 - 100 + 660 = 920(weightSoFar = 660)
  4. 实例D:360 - 200 + 920 = 1080(weightSoFar = 920)

这里的权重值表示各实例权重区间的上限,以上面的计算结果为例,它为这4个实例各构建了一个区间:

  1. 每个实例的区间下限是上一个实例的区间上限;
  2. 每个实例的区间上限是我们计算出的并存储于在List<Double>类型的accumulatedWeights变量中的权重值,其中第一个实例的下限默认为零。

所以,根据上面示例的权重计算结果,我们可以得到每个实例的权重区间:

  1. 实例A:[0,350](weightSoFar = 0)
  2. 实例B:(350, 660](weightSoFar = 350)
  3. 实例C:(660, 920](weightSoFar = 660)
  4. 实例D:(920, 1080](weightSoFar = 920)

从这里我们可以确定每个区间的宽度实际就是:总的平均响应时间 - 实例的平均响应时间,所以服务实例的平均响应时间越短、权重区间的宽度就越大,服务实例被选中的概率就越高。

这些区间边界的开闭如何确定?区间在哪里使用?

2、权重的使用

我们知道Ribbon负载均衡算法体现在IRule的choose(Object key)方法中,而choose(Object key)方法中又会调用choose(ILoadBalancer lb, Object key)方法,所以我们只需要看WeightedResponseTimeRule的choose(ILoadBalancer lb, Object key)方法:
在这里插入图片描述

方法的核心流程如下:

  1. 如果服务实例的最大权重值 < 0.001 或者服务的实例个数发生变更,则采用父类RoundRobinRule做轮询负载;
  2. 否则,利用Random函数生成一个随机数randomWeight,然后遍历权重列表,找到第一个权重值大于等于随机数randomWeight的列表索引下标,然后拿当前权重列表的索引值去服务实例列表中获取具体实例。

1)权重区间问题?

正常每个区间都为(x, y],但是第一个实例和最后一个实例不同:

  1. 由于随机数的最小取值可以为0,所以第一个实例的下限是闭区间;
  2. 随机数的最大值取不到最大权重值,所以最后一个实例的上限是开区间;
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
5天前
|
缓存 负载均衡 监控
探索分布式系统演进之路:从负载均衡到微服务架构
小米分享了分布式系统的发展,从早期的负载均衡(入口级、网关和客户端)到微服务架构的演进。微服务实现服务解耦,增强系统弹性,但带来了新的挑战。为优化数据库性能,实施了主备读写分离、全文搜索引擎、缓存集群等措施。通过微服务治理,如服务注册、动态配置、灰度发布等,提升了系统稳定性和可靠性。未来将继续优化分布式系统,提供更好的服务体验。关注公众号“软件求生”了解更多。
26 6
|
6天前
|
缓存 负载均衡 算法
【微服务 SpringCloud】实用篇 · Ribbon负载均衡
【微服务 SpringCloud】实用篇 · Ribbon负载均衡
24 0
|
6天前
|
负载均衡 算法 应用服务中间件
【微服务系列笔记】负载均衡
本文介绍了负载均衡的概念和重要性,指出随着流量增长,通过垂直扩展和水平扩展来提升系统性能,其中水平扩展引入了负载均衡的需求。负载均衡的目标是将流量分布到多台服务器以提高响应速度和可用性,常见的硬件和软件负载均衡器包括F5、A10、Nginx、HAProxy和LVS等。 文章接着提到了Ribbon,这是一个客户端实现的负载均衡器,用于Spring Cloud中。Ribbon在发起REST请求时进行拦截,根据预设的负载均衡算法(如随机算法)选择服务器,并重构请求URI。文中还介绍了如何通过代码和配置文件两种方式自定义Ribbon的负载均衡策略。
45 3
|
6天前
|
负载均衡 应用服务中间件 nginx
服务器架构、分布式系统、负载均衡、微服务、高可用性
**分布式系统取代单体架构,以微服务实现高扩展性和灵活性。通过负载均衡技术增强性能,防止单点故障,结合冗余备份与故障切换保障高可用性,这种架构是支撑大规模在线业务的关键。**
48 3
|
6天前
|
JSON 负载均衡 Java
Spring Cloud Ribbon:负载均衡的服务调用
Spring Cloud Ribbon:负载均衡的服务调用
69 0
|
6天前
|
负载均衡 算法
SpringCloud&Ribbon负载均衡原理与实践
SpringCloud&Ribbon负载均衡原理与实践
21 3
|
6天前
|
负载均衡 算法 Java
第五章 Spring Cloud Netflix 之 Ribbon
第五章 Spring Cloud Netflix 之 Ribbon
21 0
|
6天前
|
负载均衡 算法 Java
【Springcloud Alibaba微服务分布式架构 | Spring Cloud】之学习笔记(四)Ribbon的使用
【Springcloud Alibaba微服务分布式架构 | Spring Cloud】之学习笔记(四)Ribbon的使用
30 0
|
6天前
|
负载均衡
【二十】搭建SpringCloud项目四(Ribbon)
【二十】搭建SpringCloud项目四(Ribbon)
26 0
|
6天前
|
存储 负载均衡 Java
【Spring底层原理高级进阶】微服务 Spring Cloud 的注册发现机制:Eureka 的架构设计、服务注册与发现的实现原理,深入掌握 Ribbon 和 Feign 的用法 ️
【Spring底层原理高级进阶】微服务 Spring Cloud 的注册发现机制:Eureka 的架构设计、服务注册与发现的实现原理,深入掌握 Ribbon 和 Feign 的用法 ️