基于深度学习的柑橘黄龙病识别方法

简介: 基于深度学习的柑橘黄龙病识别方法

前言:


柑橘是全球种植面积最大和总产量最高的水果之一,也是我国产量最高的水果之一。其中广西的柑橘产量位居全国第一,远超其他省份。黄龙病是柑橘产业的毁灭性病害,从20世纪80年代中期开始,柑橘黄龙病已在我国广东、广西、福建、海南和台湾的柑橘产区广泛蔓延,我国栽培柑橘的19个省、区中,已有11个遭受危害。感染黄龙病的柑橘植株出现症状时,果树长势会快速衰退,树叶出现斑驳、黄化,植株矮小,果实着色不正常,呈现“红鼻子果”,导致品质变差。黄龙病传染能力强,能够迅速感染其他柑橘植株,对柑橘种植造成严重影响。柑橘黄龙病主要通过木虱传播,由于木虱只能短距离飞行,因此黄龙病属于短距离传染疾病。尽早挖除病株并对传播病菌的害虫加以防治是最有效的方法,因此,快速、及早地发现病株是防治黄龙病的最根本前提。


介绍:


       当我们刚开始接触深度学习的时候,我们的知识面可能比较..emm,少,所以导致我们做出了非常多无效的行为。所以这里我先简单介绍一下深度学习在CV方面的应用方向:!!!


大致有:


目标检测、语义分割、实例分割、全景分割、图像分类、图像识别等等


误区:


       当第一次接触农业病虫害识别时,初学者因为知识面的原因会选择将一张有多个叶片的植株投入神经网络进行训练,但其实,这样子做是十分低效的!


改进★★★:


       正确做法,应当是目标检测+图像分类!我使用yolox目标检测模型对植株进行叶片检测,之后将每一片叶子分割出来,相同的放在一组然后才投入图像分类。


同样的模型与数据集情况下,利用改进的办法准确率提高了23个百分点!

1dc618a0ed9580ce8bfa6facb208c08f.png


深度学习实现步骤:


       1、假设现在有18种不同的柑橘叶片,其中17种属于患有不同黄龙病的柑橘叶片。每张图片中当且仅当包含着18种叶片的一种,且数量不止一个,而是一片。


       2、方法:轻量级目标检测模型yolo系列+轻量级图像分类模型mobilenetV2 or efficientNetV2-s / 轻量级目标检测模型yolo系列+ 图像细分类模型。


       3、分类目标:有细微模样差别的的同种叶片。


       4、对于目标检测模型:使用了yolox模型并且训练了自己的数据集,目的在于检测出一张图片中每一片叶子的位置信息bbox,并且切割出来,方便之后进行图像识别。(如下图,从一张图片分割87张叶片图片,再将它们投入图像分类模型训练。)


5d4c6812c8535adbb050f4ddf2e1bce8.png


       5.对于图像分类模型,由于是有细微模样差别的的同种叶片,理论来讲应该是使用图像细粒度分类模型,但介于数据集目前只有二类,目前暂时只使用了一般图像分类模型进行了二分类,其中共使用了vit\mobilenetv2\efficientNetV2等图像分类模型,在二分类中均达到了接近百分之一百的准确率(99.89%)。


       6.识别一张图像过程:以上图为例:分割出87张图片,对每一张图片中的叶片进行识别,最后统计出86张是正常的,1张是有病的,那么打印出该植株共包含87张叶片,其中86片叶子是健康的,1片叶子是患了XX黄龙病的。


相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
大数据分析的技术和方法:从深度学习到机器学习
大数据时代的到来,让数据分析成为了企业和组织中不可或缺的一环。如何高效地处理庞大的数据集并且从中发现潜在的价值是每个数据分析师都需要掌握的技能。本文将介绍大数据分析的技术和方法,包括深度学习、机器学习、数据挖掘等方面的应用,以及如何通过这些技术和方法来解决实际问题。
65 2
|
机器学习/深度学习 资源调度 监控
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
|
6天前
|
机器学习/深度学习 存储 自然语言处理
深度探索自适应学习率调整:从传统方法到深度学习优化器
【5月更文挑战第15天】 在深度学习的复杂网络结构与海量数据中,学习率作为模型训练的关键超参数,其调整策略直接影响着模型的收敛速度与最终性能。传统的学习率调整方法,如固定学习率、学习率衰减等,虽然简单易行,但在多样化的任务面前往往显得力不从心。近年来,随着自适应学习率技术的兴起,一系列创新的优化器如Adam、RMSProp和Adagrad等应运而生,它们通过引入自适应机制动态调整学习率,显著改善了模型的训练效率与泛化能力。本文将深入剖析传统学习率调整方法的原理与局限性,并详细介绍当前主流的自适应学习率优化器,最后探讨未来可能的发展方向。
|
6天前
|
机器学习/深度学习 自然语言处理 算法
深度解析深度学习中的优化算法:从梯度下降到自适应方法
【4月更文挑战第28天】 在深度学习模型训练的复杂数学迷宫中,优化算法是寻找最优权重配置的关键导航者。本文将深入探讨几种主流的优化策略,揭示它们如何引导模型收敛至损失函数的最小值。我们将比较经典的批量梯度下降(BGD)、随机梯度下降(SGD)以及动量概念的引入,进一步探索AdaGrad、RMSProp和Adam等自适应学习率方法的原理与实际应用。通过剖析这些算法的理论基础和性能表现,我们旨在为读者提供一个关于选择合适优化器的参考视角。
|
6天前
|
机器学习/深度学习 算法 计算机视觉
SISR深度学习主要方法简述
SISR深度学习主要方法简述
13 0
|
6月前
|
机器学习/深度学习 移动开发 自然语言处理
深度学习的优化方法
深度学习的优化方法
59 0
|
11月前
|
机器学习/深度学习 编解码 自然语言处理
深度学习提高模型准确率方法
深度学习提高模型准确率方法
211 0
|
11月前
|
机器学习/深度学习 传感器 算法
基于深度学习的目标姿态检测方法_kaic
伴随着人工智能技术的发展,物体探测和辨识技术已被广泛用于各个领域,而作为物体探测的一个重要分支,物体姿态探测在机器人控制、自动驾驶等领域中扮演着重要角色。本文的目的在于探究基于单目相机的目标三维姿态检测方法,以实现对目标物体的快速、精确的三维姿态检测和识别,提高目标检测的准确率和效率,并为人工智能技术的发展提供新的思路和方法。 本文系统地介绍了基于单目相机的三维目标检测技术,并详细讨论了基于深度学习的单阶段目标检测算法,即YOLOv5算法。具体来说,本文采用YOLOv5算法搭建神经网络模型,在KITTI数据集构建训练集后对模型进行训练,再采集部分环境照片以及KITTI数据的部分照片构建测试集.
|
11月前
|
机器学习/深度学习 存储 缓存
深度学习应用篇-计算机视觉-视频分类8:时间偏移模块(TSM)、TimeSformer无卷积视频分类方法、注意力机制
深度学习应用篇-计算机视觉-视频分类8:时间偏移模块(TSM)、TimeSformer无卷积视频分类方法、注意力机制
深度学习应用篇-计算机视觉-视频分类8:时间偏移模块(TSM)、TimeSformer无卷积视频分类方法、注意力机制
|
11月前
|
机器学习/深度学习 人工智能 文字识别
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景