全网最快入门———R语言机器学习02

简介: R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

列表

State.center就是一个典型的列表,是美国每个周的经纬度,可以使用list()函数来创建列表:

这样就生成了一个列表,我们也可以为每个变量添加一个名称,例如:

列表中的元素不存在顺序,使用名称就可以访问数据,下面介绍一下数据列表的访问

第一种方法是可以使用索引的方式进行访问

第二种方法是可以使用名字来进行访问

另外,列表比之后的数据框多了一种$的访问方式:

对于列表还有一种双中括号的访问方式:

两者的差别在于,一个中括号其实输出的是列表的一个子集,它其实还是一个列表,因为如果一个访问多个元素,这些元素的数据类型又不同,那么输出结果只能是列表,当我们使用两个中括号进行输出,那么就是输出数据本身的类型,可以使用class()函数来测试一下

两个中括号每次只能访问一个元素,如果要像列表中添加元素,可以使用双中括号进行添加:

如果想删除列表中的元素可以使用负索引的方式,然后再赋值给原来的列表:

或者是使用Null来赋值

数据框

数据框是一种表格式的数据结构,数据框子在模拟数据集,与其他统计软件例如SAS或者SPSS中的数据集的概念一致,数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量,不同的行业对于数据集的行和列叫法不同。

数据框实际上是一个列表,列表中的元素是向量,这些向量构成数据框的列,每一列必须具有相同的长度,所以数据框市矩形结构,而且数据框的列必须命名。

矩阵和数据框的不同,矩阵必须是同一数据类型,数据框每一列必须为同一类型,每一行可以不同

数据框可以通过data.frame()函数进行创建

数据框的访问:

直接使用索引

直接使用名称进行索引

可以使用attach()将数据集存进R的内存,这样就便于访问

attach()=dollar符+框名

使用完之后可以使用detach()函数取消加载。

数据框也可以使用双中括号的方式进行访问,返回的是向量而不是列表。

因子

在R中变量可以分为名义型变量、有序型变量、连续型变量,名义型变量没有顺序的区别,有序型变量介于二者之间,不同值之间有顺序关系。

在R中,名义型变量和有序型变量被称为因子,factor,这些分类变量的可能只被称为一个水平,level,例如good、better、best,都被称为一个level,由这些水平值构成的向量就称为因子。在很多会吐函数中,输入的数据也必须是因子类型。

例如mtcars数据集,cyl这一列可以作为因子,而4、6、8就是这一列因子的水平:

那么如何来定义一个因子数据呢?

可以使用factor函数:

我们还可以在定义因子的时候人为指定level的水平:

还可以使用factor()函数将向量转变成因子:

R中有一个cut()函数,可以将连续型变量x分割成连续水平的因子:

相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
36 2
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
32 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
56 3
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
44 2
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
23 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
57 2
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
29 4
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
485 1
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)

热门文章

最新文章

下一篇
无影云桌面