前言
最近状态有点不好,所以创作动力不足,发觉日常生活一定要做减法,对少量的事保持持续专注的投入,养成良好的习惯。
今天补充下,Seata TCC模式实战。
一、TCC设计原则
从 TCC 模型的框架可以发现,TCC 模型的核心在于 TCC 接口的设计。用户在接入 TCC 时,大部分工作都集中在如何实现 TCC 服务上。
设计一套 TCC 接口最重要的是什么?主要有两点,
第一点,需要将操作分成两阶段完成。TCC(Try-Confirm-Cancel)分布式事务模型相对于 XA 等传统模型,其特征在于它不依赖 RM 对分布式事务的支持,而是通过对业务逻辑的分解来实现分布式事务。
TCC 模型认为对于业务系统中一个特定的业务逻辑 ,其对外提供服务时,必须接受一些不确定性,即对业务逻辑初步操作的调用仅是一个临时性操作,调用它的主业务服务保留了后续的取消权。如果主业务服务认为全局事务应该回滚,它会要求取消之前的临时性操作,这就对应从业务服务的取消操作。而当主业务服务认为全局事务应该提交时,它会放弃之前临时性操作的取消权,这对应从业务服务的确认操作。每一个初步操作,最终都会被确认或取消。
因此,针对一个具体的业务服务,TCC 分布式事务模型需要业务系统提供三段业务逻辑:
1、初步操作 Try:完成所有业务检查,预留必须的业务资源。
2、确认操作 Confirm:真正执行的业务逻辑,不做任何业务检查,只使用Try 阶段预留的业务资源。因此,只要 Try 操作成功,Confirm 必须能成功另外,Confirm操作需满足幂等性,保证一笔分布式事务能且只能成功一次。
注意:这里说的confirm方法必须能成功是指满足业务执行的条件,比如有足够的预留资源扣减,方法本身不能说保证一定成功。因为所有的网络操作都具有不确定性。
3、取消操作 Cancel:释放 Try 阶段预留的业务资源。同样的,Cancel操作也需要满足幂等性。
第二点,就是要根据自身的业务模型控制并发,这个对应 ACID 中的隔离性。后面会详细讲到。
二、TCC执行逻辑图
三、TCC模式和AT模式对比
根据两阶段行为模式的不同,我们将分支事务划分为 Automatic (Branch) Transaction Mode 和 TCC (Branch) Transaction Mode.
AT 模式(参考链接 TBD)基于 支持本地 ACID 事务 的 关系型数据库:
一阶段 prepare 行为:在本地事务中,一并提交业务数据更新和相应回滚日志记录。
二阶段 commit 行为:马上成功结束,自动 异步批量清理回滚日志。
二阶段 rollback 行为:通过回滚日志,自动 生成补偿操作,完成数据回滚。
相应的,TCC 模式,不依赖于底层数据资源的事务支持:
一阶段 prepare 行为:调用 自定义 的 prepare 逻辑。
二阶段 commit 行为:调用 自定义 的 commit 逻辑。
二阶段 rollback 行为:调用 自定义 的 rollback 逻辑。
所谓 TCC 模式,是指支持把自定义的分支事务纳入到全局事务的管理中。
综合比较:
1、AT需要支持本地 ACID 事务的关系型数据库,TCC不依赖底层数据资源对事务的支持。
2、AT模式使用了全局锁和本地锁,能保证强一致性。TCC只能保证最终一致性。
3、AT模式由于大量使用了锁,吞吐量较低。
4、实现复杂度上,AT模式只需要简单的添加全局事务注解,基本可以实现零侵入,而TCC模式需要自己实现prepare、commit、rollback方法,并考虑空回滚、幂等、悬挂等问题,实现成本较高。
四、TCC三大异常说明
最常见的主要是这三种异常,分别是空回滚、幂等、悬挂。
1、空回滚
首先是空回滚。什么是空回滚?空回滚就是对于一个分布式事务,在没有调用 TCC 资源 Try 方法的情况下,调用了二阶段的 Cancel 方法,Cancel 方法需要识别出这是一个空回滚,然后直接返回成功。
什么样的情形会造成空回滚呢?可以看图中的第 2 步,前面讲过,注册分支事务是在调用 RPC 时,Seata 框架的切面会拦截到该次调用请求,先向 TC 注册一个分支事务,然后才去执行 RPC 调用逻辑。如果 RPC 调用逻辑有问题,比如调用方机器宕机、网络异常,都会造成 RPC 调用失败,即未执行 Try 方法。但是分布式事务已经开启了,需要推进到终态,因此,TC 会回调参与者二阶段 Cancel 接口,从而形成空回滚。
那会不会有空提交呢?理论上来说不会的,如果调用方宕机,那分布式事务默认是回滚的。如果是网络异常,那 RPC 调用失败,发起方应该通知 TC 回滚分布式事务,这里可以看出为什么是理论上的,就是说发起方可以在 RPC 调用失败的情况下依然通知 TC 提交,这时就会发生空提交,这种情况要么是编码问题,要么开发同学明确知道需要这样做。
那怎么解决空回滚呢?前面提到,Cancel 要识别出空回滚,直接返回成功。那关键就是要识别出这个空回滚。**思路很简单就是需要知道一阶段是否执行,如果执行了,那就是正常回滚;**如果没执行,那就是空回滚。因此,需要一张额外的事务控制表,其中有分布式事务 ID 和分支事务 ID,第一阶段 Try 方法里会插入一条记录,表示一阶段执行了。Cancel 接口里读取该记录,如果该记录存在,则正常回滚;如果该记录不存在,则是空回滚。
2、幂等
接下来是幂等。幂等就是对于同一个分布式事务的同一个分支事务,重复去调用该分支事务的第二阶段接口,因此,要求 TCC 的二阶段 Confirm 和 Cancel 接口保证幂等,不会重复使用或者释放资源。如果幂等控制没有做好,很有可能导致资损等严重问题。
什么样的情形会造成重复提交或回滚?从图中可以看到,提交或回滚是一次 TC 到参与者的网络调用。因此,网络故障、参与者宕机等都有可能造成参与者 TCC 资源实际执行了二阶段防范,但是 TC 没有收到返回结果的情况,这时,TC 就会重复调用,直至调用成功,整个分布式事务结束。
怎么解决重复执行的幂等问题呢?一个简单的思路就是记录每个分支事务的执行状态。在执行前状态,如果已执行,那就不再执行;否则,正常执行。前面在讲空回滚的时候,已经有一张事务控制表了,事务控制表的每条记录关联一个分支事务,那我们完全可以在这张事务控制表上加一个状态字段,用来记录每个分支事务的执行状态。
如图所示,该状态字段有三个值,分别是初始化、已提交、已回滚。Try 方法插入时,是初始化状态。二阶段 Confirm 和 Cancel 方法执行后修改为已提交或已回滚状态。当重复调用二阶段接口时,先获取该事务控制表对应记录,检查状态,如果已执行,则直接返回成功;否则正常执行。
3、悬挂
最后是防悬挂。悬挂就是对于一个分布式事务,其二阶段 Cancel 接口比 Try 接口先执行。因为允许空回滚的原因,Cancel 接口认为 Try 接口没执行,空回滚直接返回成功,对于 Seata 框架来说,认为分布式事务的二阶段接口已经执行成功,整个分布式事务就结束了。但是这之后 Try 方法才真正开始执行,预留业务资源,前面提到事务并发控制的业务加锁,对于一个 Try 方法预留的业务资源,只有该分布式事务才能使用,然而 Seata 框架认为该分布式事务已经结束,也就是说,当出现这种情况时,该分布式事务第一阶段预留的业务资源就再也没有人能够处理了,对于这种情况,我们就称为悬挂,即业务资源预留后没法继续处理。
简单来说,悬挂就是 Cancel 接口比 Try 接口先执行,Cancel 接口进行了空回滚,Try 接口才执行进行资源预留,而预留的资源又没有对应的Cancel 接口去进行消费,所以导致这部分预留资源没法处理。
什么样的情况会造成悬挂呢?按照前面所讲,在 RPC 调用时,先注册分支事务,再执行 RPC 调用,如果此时 RPC 调用的网络发生拥堵,通常 RPC 调用是有超时时间的,RPC 超时以后,发起方就会通知 TC 回滚该分布式事务,可能回滚完成后,RPC 请求才到达参与者,真正执行,从而造成悬挂。
怎么实现才能做到防悬挂呢?根据悬挂出现的条件先来分析下,悬挂是指二阶段 Cancel 执行完后,一阶段才执行。也就是说,为了避免悬挂,如果二阶段执行完成,那一阶段就不能再继续执行。因此,当一阶段执行时,需要先检查二阶段是否已经执行完成,如果已经执行,则一阶段不再执行;否则可以正常执行。那怎么检查二阶段是否已经执行呢?大家是否想到了刚才解决空回滚和幂等时用到的事务控制表,可以在二阶段执行时插入一条事务控制记录,状态为已回滚,这样当一阶段执行时,先读取该记录,如果记录存在,就认为二阶段已经执行;否则二阶段没执行。