【深度学习】2-模型在测试集的准确率大于训练集

简介: 【深度学习】2-模型在测试集的准确率大于训练集

1. 问题描述


在模型训练过程中突然发现,模型的准确率在测试集上居然比在训练集上还要高。但是我们知道,我们训练模型的方式就是在训练集上最小化损失。因此,模型在训练集上有着更好的表现,才应该是正常的现象。

那么,是什么导致了在测试集上准确率更高的现象呢?


模型训练结果:


image.png


2. 解决问题


2. 1. 欠拟合

后来我咨询了某大佬,她说:“多训练几次看看,前几次一直在欠拟合”,我顿时感觉,好建议!


增加训练周期数:

image.png


果然!随着训练周期的增加,模型准确率慢慢地回归了正轨。在训练集上的准确率又超过了测试集上的。


2. 2. 小批量统计的滞后性

但我依然有所疑惑,为什么在训练周期较少的欠拟合状态下,会出现模型在测试集上准确率更高的情况呢?它们之间有什么关系?

有一篇博文给出的部分解释,我觉得很合理,比较符合我遇到的情况:


训练集的准确率是每个batch之后产生的,而验证集的准确率一般是一个epoch后产生的,验证时的模型是训练一个个batch之后的,有一个滞后性,可以说就是用训练得差不多的模型用来验证,当然准确率要高一点。


也就是说,问题的出现和个人具体统计训练集准确率的方式有关。如果是在每个训练周期结束后再统计训练集上的模型准确率,而不是在每个小批量结束就统计,那就不会出现这样的问题。

当然,光说是不行的,得实践。我检查了之前的模型代码,发现我训练集上的准确率确实是每个小批量结束后就统计的。那不妨试试训练集的准确率也在每个周期结束后再进行统计。


每个训练周期后再统计训练集上的准确率( train acc 2):


image.png

容易发现,即使在欠拟合的状态下,如果训练集和测试集准确率的统计方式相同,模型还是会在训练集上的准确率更高。


参考文献:


神经网络与深度学习—验证集(测试集)准确率高于训练集准确率的原因


小结


遇到问题,看一看别人的想法,可能会让自己瞬间茅塞顿开。一个人钻牛角尖不可取。


相关文章
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
15 5
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
7 1
|
4天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
3天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
13 2
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
10 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
18 2
|
5天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
32 9
|
2天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
3天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。

热门文章

最新文章