【图像分割】基于麻雀算法优化的Tsallis相对熵实现图像多阈值分割附matlab代码

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: 【图像分割】基于麻雀算法优化的Tsallis相对熵实现图像多阈值分割附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

本文提出了一种麻雀优化Tsallis相对熵的图像多阈值分割算法.首先分析了Tsallis相对熵阈值分割原理,并将其推广到多阈值分割.利用高斯分布拟合分割后的图像直方图信息,利用Tsallis相对熵作为衡量最佳分割阈值的度量函数.将麻雀优化算法与Tsallis相对熵度量函数结合,求解Tsallis相对熵函数的最优解,提高阈值分割算法的速度.最后将所提算法并且与经典的Otsu算法和基于二维熵的多阈值分割法进行对比.实验结果表明所提算法速度快,准确性高能够用于图像的多阈值分割.

⛄ 部分代码

%_______________________________________________________________________

% 麻雀优化算法             %_________________________________________________________________________

function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)

ST = 0.6;%预警值

PD = 0.7;%发现者的比列,剩下的是加入者

SD = 0.2;%意识到有危险麻雀的比重

PDNumber = round(pop*PD); %发现者数量

SDNumber = round(pop*SD);%意识到有危险麻雀数量

if(max(size(ub)) == 1)

  ub = ub.*ones(1,dim);

  lb = lb.*ones(1,dim);  

end

%种群初始化

X0=initialization(pop,dim,ub,lb);

X = X0;

%计算初始适应度值

fitness = zeros(1,pop);

for i = 1:pop

  fitness(i) =  fobj(X(i,:));

end

[fitness, index]= sort(fitness);%排序

BestF = fitness(1);

WorstF = fitness(end);

GBestF = fitness(1);%全局最优适应度值

for i = 1:pop

   X(i,:) = X0(index(i),:);

end

curve=zeros(1,Max_iter);

GBestX = X(1,:);%全局最优位置

X_new = X;

for i = 1: Max_iter

   estF = fitness(1);

   WorstF = fitness(end);

   R2 = rand(1);

  for j = 1:PDNumber

     if(R2<ST)

         X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));

     else

         X_new(j,:) = X(j,:) + randn()*ones(1,dim);

     end    

  end

  for j = PDNumber+1:pop

%        if(j>(pop/2))

       if(j>(pop - PDNumber)/2 + PDNumber)

         X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);

      else

         %产生-1,1的随机数

         A = ones(1,dim);

         for a = 1:dim

           if(rand()>0.5)

               A(a) = -1;

           end

         end

         AA = A'*inv(A*A');    

         X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';

      end

  end

  Temp = randperm(pop);

  SDchooseIndex = Temp(1:SDNumber);

  for j = 1:SDNumber

      if(fitness(SDchooseIndex(j))>BestF)

          X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));

      elseif(fitness(SDchooseIndex(j))== BestF)

          K = 2*rand() -1;

          X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));

      end

  end

  %边界控制

  for j = 1:pop

      for a = 1: dim

          if(X_new(j,a)>ub(a))

              X_new(j,a) =ub(a);

          end

          if(X_new(j,a)<lb(a))

              X_new(j,a) =lb(a);

          end

      end

  end

  %更新位置

  for j=1:pop

   fitness_new(j) = fobj(X_new(j,:));

  end

  for j = 1:pop

   if(fitness_new(j) < GBestF)

      GBestF = fitness_new(j);

       GBestX = X_new(j,:);  

   end

  end

  X = X_new;

  fitness = fitness_new;

   %排序更新

  [fitness, index]= sort(fitness);%排序

  BestF = fitness(1);

  WorstF = fitness(end);

  for j = 1:pop

     X(j,:) = X(index(j),:);

  end

  curve(i) = GBestF;

end

Best_pos =GBestX;

Best_score = curve(end);

end


⛄ 运行结果

⛄ 参考文献

[1]李粉红、卢晶、张志光. 一种风驱动优化Tsallis相对熵的图像多阈值分割方法[J]. 红外技术, 2020, 42(10):7.

[2]吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术, 2021.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除
相关文章
|
7天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
7天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
83 14
|
9天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
8天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
10天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
110 15
|
12天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
85 11
|
12天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
12天前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
7天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章