【算法刷题】—7.30DP动态规划的应用

简介: ✨今日算法一题网格中的最小路径代价

✨今日算法一题


网格中的最小路径代价


文章目录



网格中的最小路径代价


题目描述


思路详解


我们仔细观察题目,这是一道典型的dp题目。

定义状态:dp[i][j]表示以gril[i][j]结尾的路径的的最小值

状态转移:dp[i][j] = Math.min(dp[i - 1][k] + moveCost[grid[i - 1][k]][j] + grid[i][j],dp[i][j]);

dp[i - 1][k] 从dp[i-1][k]到dp[i][j]

moveCost[grid[i - 1][k]][j] 从dp[i-1][k]到dp[i][j]的路径的值

grid[i][j] 该点的值


代码与结果

class Solution {
    public int minPathCost(int[][] grid, int[][] moveCost) {
    int n = grid.length, m = grid[0].length;
    int[][] dp = new int[n][m];//dp[i][j]表示以gril[i][j]结尾的路径的最小值
    int ans = Integer.MAX_VALUE;
    for (int i = 0; i < dp.length; i++) {
      Arrays.fill(dp[i], Integer.MAX_VALUE);
    }
    for (int j = 0; j < m; j++) {
      dp[0][j] = grid[0][j];
    }
    for (int i = 1; i < n; i++) {
      for (int j = 0; j < m; j++) {
        for (int k = 0; k < m; k++) {
          /*
           * dp[i - 1][k] 从dp[i-1][k]到dp[i][j]
           * moveCost[grid[i - 1][k]][j] 从dp[i-1][k]到dp[i][j]的路径的值
           * grid[i][j]  该点的值
           */
          dp[i][j] = Math.min(dp[i - 1][k] + moveCost[grid[i - 1][k]][j] + grid[i][j],
             dp[i][j]);
        }
      }
    }
    n--;//为了方便枚举终点的路径最小值
    for (int j = 0; j < m; j++) {
      ans = Math.min(ans, dp[n][j]);//寻找达到尾部的最小值
    }
    return ans;
  }
}

✨总结


dp动态规划算法,也是比较难的一类算法。难点在于状态转移方程的寻找。这个只有多多做题经历多练就很熟悉了。加油!!!

相关文章
|
7天前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
38 15
|
14天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
15天前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
27 4
算法系列之动态规划
|
2天前
|
人工智能 自然语言处理 供应链
从第十批算法备案通过名单中分析算法的属地占比、行业及应用情况
2025年3月12日,国家网信办公布第十批深度合成算法通过名单,共395款。主要分布在广东、北京、上海、浙江等地,占比超80%,涵盖智能对话、图像生成、文本生成等多行业。典型应用包括医疗、教育、金融等领域,如觅健医疗内容生成算法、匠邦AI智能生成合成算法等。服务角色以面向用户为主,技术趋势为多模态融合与垂直领域专业化。
|
9天前
|
存储 人工智能 算法
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
|
15天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
29 3
|
3天前
|
人工智能 自然语言处理 算法
从第九批深度合成备案通过公示名单分析算法备案属地、行业及应用领域占比
2024年12月20日,中央网信办公布第九批深度合成算法名单。分析显示,教育、智能对话、医疗健康和图像生成为核心应用领域。文本生成占比最高(57.56%),涵盖智能客服、法律咨询等;图像/视频生成次之(27.32%),应用于广告设计、影视制作等。北京、广东、浙江等地技术集中度高,多模态融合成未来重点。垂直行业如医疗、教育、金融加速引入AI,提升效率与用户体验。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
5天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
6天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。

热门文章

最新文章