【智能优化算法-灰狼算法】基于差分进化与优胜劣汰策略的灰狼优化算法求解单目标优化问题附Matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【智能优化算法-灰狼算法】基于差分进化与优胜劣汰策略的灰狼优化算法求解单目标优化问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

为了改善灰狼优化算法收敛速度慢,寻优精度低,易早熟等缺陷,提出1种改进的灰狼优化算法.在基本灰狼优化算法的基础上,引入差分进化机制生成1个变异种群,通过其动态缩放因子和交叉概率因子避免算法陷入局部最优.引入优胜劣汰的生物竞争淘汰策略,根据比较进化变异后狼群个体适应度值淘汰m只狼,同时随机生成与被淘汰狼数量相同的狼.采用典型的单峰与多峰函数对该文算法进行测试.仿真结果表明,该文算法的综合性能优于粒子群优化(PSO)和人工蜂群(ABC)等其他对比算法,提高了局部搜索的效率和精度.将该文算法应用于冷凝器实际控制参数整定优化问题中,并与遗传算法(GA),PSO和工程整定(ZN)法进行比较.仿真结果表明,该文算法整定的参数输出响应的调整时间和上升时间减小,最大超调量降低且稳定性好.

⛄ 部分代码

%___________________________________________________________________%

%  Grey Wolf Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

   for i=1:size(Positions,1)  

       

      % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;              

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update Alpha, Beta, and Delta

       if fitness<Alpha_score

           Alpha_score=fitness; % Update alpha

           Alpha_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness<Beta_score

           Beta_score=fitness; % Update beta

           Beta_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

           Delta_score=fitness; % Update delta

           Delta_pos=Positions(i,:);

       end

   end

     

   a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

   

   % Update the Position of search agents including omegas

   for i=1:size(Positions,1)

       for j=1:size(Positions,2)    

                     

           r1=rand(); % r1 is a random number in [0,1]

           r2=rand(); % r2 is a random number in [0,1]

           

           A1=2*a*r1-a; % Equation (3.3)

           C1=2*r2; % Equation (3.4)

           

           D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

           X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                     

           r1=rand();

           r2=rand();

           

           A2=2*a*r1-a; % Equation (3.3)

           C2=2*r2; % Equation (3.4)

           

           D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

           X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2      

           

           r1=rand();

           r2=rand();

           

           A3=2*a*r1-a; % Equation (3.3)

           C3=2*r2; % Equation (3.4)

           

           D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

           X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3            

           

           Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

           

       end

   end

   l=l+1;    

   Convergence_curve(l)=Alpha_score;

end

⛄ 运行结果

image.gif编辑

image.gif编辑

⛄ 参考文献

[1]朱海波, 张勇. 基于差分进化与优胜劣汰策略的灰狼优化算法[J]. 南京理工大学学报, 2018, 42(6):9.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
7天前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
102 26
|
7天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
103 6
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
7天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
83 14
|
7天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
|
7天前
|
算法 数据可视化 异构计算
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
|
8天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
8天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
8天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)

热门文章

最新文章