二叉树——112. 路径总和

简介: 本专栏按照数组—链表—哈希—字符串—栈与队列—二叉树—回溯—贪心—动态规划—单调栈的顺序刷题,采用代码随想录所给的刷题顺序,一个正确的刷题顺序对算法学习是非常重要的,希望对大家有帮助

1 题目描述

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。

叶子节点 是指没有子节点的节点。

题目描述来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/path-sum

2 题目示例

image.png

image.png

示例 3:

输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。

3 题目提示

树中节点的数目在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000

4 思路

注意到本题的要求是,询问是否有从「根节点」到某个「叶子节点」经过的路径上的节点之和等于目标和。核心思想是对树进行一次遍历,在遍历时记录从根节点到当前节点的路径和,以防止重复计算。

需要特别注意的是,给定的 root 可能为空。

方法一:广度优先搜索
首先我们可以想到使用广度优先搜索的方式,记录从根节点到当前节点的路径和,以防止重复计算。

这样我们使用两个队列,分别存储将要遍历的节点,以及根节点到这些节点的路径和即可。
复杂度分析

  • 时间复杂度:o(N),其中N是树的节点数。对每个节点访问一次。
  • 空间复杂度:o(N),其中N是树的节点数。空间复杂度主要取决于队列的开销,队列中的元素个数不会超过树的节点数。

方法二:递归
观察要求我们完成的函数,我们可以归纳出它的功能:询问是否存在从当前节点root到叶子节点的路径,满足其路径和为sum。
假定从根节点到当前节点的值之和为val ,我们可以将这个大问题转化为一个小问题:是否存在从当前节点的子节点到叶子的路径,满足其路径和为sum - va1 。
不难发现这满足递归的性质,若当前节点就是叶子节点,那么我们直接判断sum是否等于va1即可(因为路径和已经确定,就是当前节点的值,我们只需要判断该路径和是否满足条件)。若当前节点不是叶子节点,我们只需要递归地询问它的子节点是否能满足条件即可。
复杂度分析

  • 时间复杂度:O(N),其中N是树的节点数。对每个节点访问一次。
  • 空间复杂度:O(H),其中H是树的高度。空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为o(N)。平均情况下树的高度与节点数的对数正相关,空间复杂度为O(log N)。

5 我的答案

方法一:广度优先搜索

class Solution {
    public boolean hasPathSum(TreeNode root, int sum) {
        if (root == null) {
            return false;
        }
        Queue<TreeNode> queNode = new LinkedList<TreeNode>();
        Queue<Integer> queVal = new LinkedList<Integer>();
        queNode.offer(root);
        queVal.offer(root.val);
        while (!queNode.isEmpty()) {
            TreeNode now = queNode.poll();
            int temp = queVal.poll();
            if (now.left == null && now.right == null) {
                if (temp == sum) {
                    return true;
                }
                continue;
            }
            if (now.left != null) {
                queNode.offer(now.left);
                queVal.offer(now.left.val + temp);
            }
            if (now.right != null) {
                queNode.offer(now.right);
                queVal.offer(now.right.val + temp);
            }
        }
        return false;
    }
}

方法二:递归

class Solution {
    public boolean hasPathSum(TreeNode root, int sum) {
        if (root == null) {
            return false;
        }
        if (root.left == null && root.right == null) {
            return sum == root.val;
        }
        return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
    }
}
相关文章
|
1月前
【LeetCode 35】112.路径总和
【LeetCode 35】112.路径总和
24 0
|
6月前
leetcode113路径总和2
leetcode113路径总和2
56 0
|
1月前
【LeetCode 36】113.路径总和II
【LeetCode 36】113.路径总和II
29 0
|
6月前
|
测试技术
【树】【图论】【树路径】【深度优先搜索】2867. 统计树中的合法路径数目
【树】【图论】【树路径】【深度优先搜索】2867. 统计树中的合法路径数目
|
6月前
leetcode-437:路径总和 III
leetcode-437:路径总和 III
47 0
|
6月前
|
Java C++ Python
leetcode-112:路径总和
leetcode-112:路径总和
46 0
|
6月前
|
存储 算法 程序员
【算法训练-二叉树 六】【路径和计算】路径总和I、路径总和II、路径总和III、二叉树的最大路径和
【算法训练-二叉树 六】【路径和计算】路径总和I、路径总和II、路径总和III、二叉树的最大路径和
83 0
【Leetcode -111.二叉树的最小深度 -112.路径总和】
【Leetcode -111.二叉树的最小深度 -112.路径总和】
47 0
LeetCode 437. 路径总和 III
LeetCode 437. 路径总和 III
89 0
LeetCode 437. 路径总和 III