1 题目描述
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
2 题目示例
3 题目提示
该题竟然没有任何提示
4 思路
方法一:深度优先搜索
如果我们知道了左子树和右子树的最大深度Ⅰ和r,那么该二叉树的最大深度即为
max(l, r)+1
而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在O(1)时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。
复杂度分析
时间复杂度:O(n),其中n为二叉树节点的个数。每个节点在递归中只被遍历一次。
空间复杂度:O(height),其中height表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。
方法二:广度优先搜索
我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行—些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量ans来维护拓展的次数,该二叉树的最大深度即为ans。
复杂度分析
·时间复杂度:O(n),其中n为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。
·空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到O(n)。
5 我的答案
方法一:深度优先搜索
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
} else {
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return Math.max(leftHeight, rightHeight) + 1;
}
}
}
方法二:广度优先搜索
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
int ans = 0;
while (!queue.isEmpty()) {
int size = queue.size();
while (size > 0) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
size--;
}
ans++;
}
return ans;
}
}